EUROPEAN PATENT SPECIFICATION

Date of publication and mention of the grant of the patent:
18.03.2009 Bulletin 2009/12

Application number: 07119364.3

Date of filing: 22.04.2003

Decoding apparatus with decorrelator unit
Dekodiervorrichtung mit Dekorreliereneinheit
Dispositif de décodage avec unité de décorrelation

Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

Priority:
22.04.2002 EP 02076588
12.07.2002 EP 02077863
14.10.2002 EP 02079303
20.11.2002 EP 02079817

Date of publication of application:
23.01.2008 Bulletin 2008/04

Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
03715237.8 / 1 500 084

Proprietor: Koninklijke Philips Electronics N.V.
5621 BA Eindhoven (NL)

Inventors:
• Breebaart, Dirk J.
5600 AE, Eindhoven (NL)

• Van de Par, Steven L. J. D. E.
5600 AE, Eindhoven (NL)

Representative: Groenendaal, Antonius W. M.
Philips Intellectual Property & Standards
P.O. Box 220
5600 AE Eindhoven (NL)

References cited:
GB-A- 2 353 926

• FALLER C ET AL: “Efficient representation of spatial audio using perceptual parametrization”
IEEE WORKSHOP ON APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS, 21 October 2001 (2001-10-21), pages 199-202, XP002245584

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
Description

FIELD OF THE INVENTION

[0001] This invention relates to the decoding of audio signals and, more particularly, the decoding of multi-channel audio signals.

BACKGROUND OF THE INVENTION

[0002] Within the field of audio coding it is generally desired to encode an audio signal, e.g. in order to reduce the bit rate for communicating the signal or the storage requirement for storing the signal, without unduly compromising the perceptual quality of the audio signal. This is an important issue when audio signals are to be transmitted via communications channels of limited capacity or when they are to be stored on a storage medium having a limited capacity.

[0003] Prior solutions in audio coders that have been suggested to reduce the bitrate of stereo program material include:

'Intensity stereo'. In this algorithm, high frequencies (typically above 5 kHz) are represented by a single audio signal (i.e., mono), combined with time-varying and frequency-dependent scalefactors.

'MIS stereo'. In this algorithm, the signal is decomposed into a sum (or mid, or common) and a difference (or side, or uncommon) signal. This decomposition is sometimes combined with principle component analysis or time-varying scalefactors. These signals are then coded independently, either by a transform coder or waveform coder. The amount of information reduction achieved by this algorithm strongly depends on the spatial properties of the source signal. For example, if the source signal is monaural, the difference signal is zero and can be discarded. However, if the correlation of the left and right audio signals is low (which is often the case), this scheme offers only little advantage.

[0004] Parametric descriptions of audio signals have gained interest during the last years, especially in the field of audio coding. It has been shown that transmitting (quantized) parameters that describe audio signals requires only little transmission capacity to resynthesize a perceptually equal signal at the receiving end. However, current parametric audio coders focus on coding monaural signals, and stereo signals are often processed as dual mono.

[0005] European patent application EP 1 107 232 discloses a method of encoding a stereo signal having an L and an R component, where the stereo signal is represented by one of the stereo components and parametric information capturing phase and level differences of the audio signal. At the decoder, the other stereo component is recovered based on the encoded stereo component and the parametric information.

SUMMARY OF THE INVENTION

[0007] It is an object of the present invention to solve the problem of providing an improved audio decoding that yields a high perceptual quality of the recovered signal.

[0008] According to the invention, there is provided a decoding apparatus as set forth in claim 1. Preferred embodiments are set forth in the dependent claims.

[0009] As an example, there is a method of coding an audio signal, the method comprising:

- generating a monaural signal comprising a combination of at least two input audio channels,
- determining a set of spatial parameters indicative of spatial properties of the at least two input audio channels, the set of spatial parameters including a parameter representing a measure of similarity of waveforms of the at least two input audio channels, and
- generating an encoded signal comprising the monaural signal and the set of spatial parameters.

[0010] It has been realized by the inventor that by encoding a multi-channel audio signal as a monaural audio signal and a number of spatial attributes comprising a measure of similarity of the corresponding waveforms, the multi-channel signal may be recovered with a high perceptual quality. It is a further advantage of the example that it provides an efficient encoding of a multi-channel signal, i.e. a signal comprising at least a first and second channel, e.g. a stereo signal, a quadraphonic signal, etc.

[0011] Hence, according to an aspect of the example, spatial attributes of multi-channel audio signals are parameterized. For general audio coding applications, transmitting these parameters combined with only one monaural audio signal strongly reduces the transmission capacity necessary to transmit the stereo signal compared to audio coders that process the channels independently, while maintaining the original spatial impression. An important issue is that although
people receive waveforms of an auditory object twice (once by the left ear and once by the right ear), only a single auditory object is perceived at a certain position and with a certain size (or spatial diffuseness).

Therefore, it seems unnecessary to describe audio signals as two or more (independent) waveforms and it would be better to describe multi-channel audio as a set of auditory objects, each with its own spatial properties. One difficulty that immediately arises is the fact that it is almost impossible to automatically separate individual auditory objects from a given ensemble of auditory objects, for example a musical recording. This problem can be circumvented by not splitting the program material in individual auditory objects, but rather describing the spatial parameters in a way that resembles the effective (peripheral) processing of the auditory system. When the spatial attributes comprise a measure of (dis)similarity of the corresponding waveforms, an efficient coding is achieved while maintaining a high level of perceptual quality.

In a preferred example, the set of spatial parameters includes at least one localization cue. When the spatial attributes comprise one or more, preferably two, localization cues as well as a measure of (dis)similarity of the corresponding waveforms, a particularly efficient coding is achieved while maintaining a particularly high level of perceptual quality.

The term localization cue comprises any suitable parameter conveying information about the localization of auditory objects contributing to the audio signal, e.g. the orientation of and/or the distance to an auditory object.

In a preferred example, the set of spatial parameters includes at least two localization cues comprising an interchannel level difference (ILD) and a selected one of an interchannel time difference (ITD) and an interchannel phase difference (IPD). It is interesting to mention that the interchannel level difference and the interchannel time difference are considered to be the most important localization cues in the horizontal plane.

The measure of similarity of the waveforms corresponding to the first and second audio channels may be any suitable function describing how similar or dissimilar the corresponding waveforms are. Hence, the measure of similarity may be an increasing function of similarity, e.g. a parameter determined from the interchannel cross-correlation function.

According to a preferred example, the measure of similarity corresponds to a value of a cross-correlation function at a maximum of said cross-correlation function (also known as coherence). The maximum interchannel cross-correlation is strongly related to the perceptual spatial diffuseness (or compactness) of a sound source, i.e. it provides additional information which is not accounted for by the above localization cues, thereby providing a set of parameters with a low degree of redundancy of the information conveyed by them and, thus, providing an efficient coding.

It is noted that, alternatively, other measures of similarity may be used, e.g. a function increasing with the dissimilarity of the waveforms. An example of such a function is 1-c, where c is a cross-correlation that may assume values between 0 and 1.

According to a preferred example, the step of determining a set of spatial parameters indicative of spatial properties comprises determining a set of spatial parameters as a function of time and frequency.

It is an insight of the inventors that it is sufficient to describe spatial attributes of any multichannel audio signal by specifying the ILD, ITD (or IPD) and the maximum correlation as a function of time and frequency.

In a further preferred example, the step of determining a set of spatial parameters indicative of spatial properties comprises

- dividing each of the at least two input audio channels into corresponding pluralities of frequency bands;
- for each of the plurality of frequency bands determining the set of spatial parameters indicative of spatial properties of the at least two input audio channels within the corresponding frequency band.

Hence, the incoming audio signal is split into several band-limited signals, which are (preferably) spaced linearly at an ERB-rate scale. Preferably the analysis filters show a partial overlap in the frequency and/or time domain. The bandwidth of these signals depends on the center frequency, following the ERB rate. Subsequently, preferably for every frequency band, the following properties of the incoming signals are analyzed:

- The interchannel level difference, or ILD, defined by the relative levels of the band-limited signal stemming from the
left and right signals,
- The interchannel time (or phase) difference (ITD or IPD), defined by the interchannel delay (or phase shift) corresponding to the position of the peak in the interchannel cross-correlation function, and
- The (dis)similarity of the waveforms that can not be accounted for by ITDs or ILDs, which can be parameterized by the maximum interchannel cross-correlation (i.e., the value of the normalized cross-correlation function at the position of the maximum peak, also known as coherence).

[0024] The three parameters described above vary over time; however, since the binaural auditory system is very sluggish in its processing, the update rate of these properties is rather low (typically tens of milliseconds).

[0025] It may be assumed here that the (slowly) time-varying properties mentioned above are the only spatial signal properties that the binaural auditory system has available, and that from these time and frequency dependent parameters, the perceived auditory world is reconstructed by higher levels of the auditory system.

[0026] An example aims at describing a multichannel audio signal by:

one monaural signal, consisting of a certain combination of the input signals, and
a set of spatial parameters: two localization cues (ILD, and ITD or IPD) and a parameter that describes the similarity or dissimilarity of the waveforms that cannot be accounted for by ILDs and/or ITDs (e.g., the maximum of the cross-correlation function) preferably for every time/frequency slice. Preferably, spatial parameters are included for each additional auditory channel.

[0027] An important issue of transmission of parameters is the accuracy of the parameter representation (i.e., the size of quantization errors), which is directly related to the necessary transmission capacity.

[0028] According to yet another example, the step of generating an encoded signal comprising the monaural signal and the set of spatial parameters comprises generating a set of quantized spatial parameters, each introducing a corresponding quantization error relative to the corresponding determined spatial parameter, wherein at least one of the introduced quantization errors is controlled to depend on a value of at least one of the determined spatial parameters.

[0029] Hence, the quantization error introduced by the quantization of the parameters is controlled according to the sensitivity of the human auditory system to changes in these parameters. This sensitivity strongly depends on the values of the parameters itself. Hence, by controlling the quantization error to depend on the values of the parameters, an improved encoding is achieved.

[0030] It is an advantage of the example that it provides a decoupling of monaural and binaural signal parameters in audio coders. Hence, difficulties related to stereo audio coders are strongly reduced (such as the audibility of interaurally uncorrelated quantization noise compared to interaurally correlated quantization noise, or interaural phase inconsistencies in parametric coders that are encoding in dual mono mode).

[0031] It is a further advantage of the example that a strong bitrate reduction is achieved in audio coders due to a low update rate and low frequency resolution required for the spatial parameters. The associated bitrate to code the spatial parameters is typically 10 kbit/s or less (see the embodiment described below).

[0032] It is a further advantage of the example that it may easily be combined with existing audio coders. The proposed scheme produces one monaural signal that can be coded and decoded with any existing coding strategy. After monaural decoding, the system described here regenerates a stereo multichannel signal with the appropriate spatial attributes.

[0033] The set of spatial parameters can be used as an enhancement layer in audio coders. For example, a mono signal is transmitted if only a low bitrate is allowed, while by including the spatial enhancement layer the decoder can reproduce stereo sound.

[0034] It is noted that the example is not limited to stereo signals but may be applied to any multi-channel signal comprising n channels (n>1). In particular, the example can be used to generate n channels from one mono signal, if (n-1) sets of spatial parameters are transmitted. In this case, the spatial parameters describe how to form the n different audio channels from the single mono signal.

[0035] The present example can be implemented in different ways including the method described above and in the following, a method of decoding a coded audio signal, an encoder, a decoder, and further product means, each yielding one or more of the benefits and advantages described in connection with the first-mentioned method, and each having one or more preferred examples corresponding to the preferred examples described in connection with the first-mentioned method.

[0036] It is noted that the features of the method described above and in the following may be implemented in software and carried out in a data processing system or other processing means caused by the execution of computer-executable instructions. The instructions may be program code means loaded in a memory, such as a RAM, from a storage medium or from another computer via a computer network. Alternatively, the described features may be implemented by hardwired circuitry instead of software or in combination with software.

[0037] The example further relates to an encoder for coding an audio signal, the encoder comprising:
- means for generating a monaural signal comprising a combination of at least two input audio channels,
- means for determining a set of spatial parameters indicative of spatial properties of the at least two input audio channels, the set of spatial parameters including a parameter representing a measure of similarity of waveforms of the at least two input audio channels, and
- means for generating an encoded signal comprising the monaural signal and the set of spatial parameters.

[0038] It is noted that the above means for generating a monaural signal, the means for determining a set of spatial parameters as well as means for generating an encoded signal may be implemented by any suitable circuit or device, e.g. as general- or special-purpose programmable microprocessors, Digital Signal Processors (DSP), Application Specific Integrated Circuits (ASIC), Programmable Logic Arrays (PLA), Field Programmable Gate Arrays (FPGA), special purpose electronic circuits, etc., or a combination thereof.

[0039] The example further relates to an apparatus for supplying an audio signal, the apparatus comprising:
- an input for receiving an audio signal,
- an encoder as described above and in the following for encoding the audio signal to obtain an encoded audio signal, and
- an output for supplying the encoded audio signal.

[0040] The apparatus may be any electronic equipment or part of such equipment, such as stationary or portable computers, stationary or portable radio communication equipment or other handheld or portable devices, such as media players, recording devices, etc. The term portable radio communication equipment includes all equipment such as mobile telephones, pagers, communicators, i.e. electronic organizers, smart phones, personal digital assistants (PDAs), hand-held computers, or the like.

[0041] The input may comprise any suitable circuitry or device for receiving a multi-channel audio signal in analogue or digital form, e.g. via a wired connection, such as a line jack, via a wireless connection, e.g. a radio signal, or in any other suitable way.

[0042] Similarly, the output may comprise any suitable circuitry or device for supplying the encoded signal. Examples of such outputs include a network interface for providing the signal to a computer network, such as a LAN, an Internet, or the like, communications circuitry for communicating the signal via a communications channel, e.g. a wireless communications channel, etc. In other embodiments, the output may comprise a device for storing a signal on a storage medium.

[0043] The example further relates to an encoded audio signal, the signal comprising:
- a monaural signal comprising a combination of at least two audio channels, and
- a set of spatial parameters indicative of spatial properties of the at least two input audio channels, the set of spatial parameters including a parameter representing a measure of similarity of waveforms of the at least two input audio channels.

[0044] The example further relates to a storage medium having stored thereon such an encoded signal. Here, the term storage medium comprises but is not limited to a magnetic tape, an optical disc, a digital video disk (DVD), a compact disc (CD or CD-ROM), a mini-disc, a hard disk, a floppy disk, a ferro-electric memory, an electrically erasable programmable read only memory (EEPROM), a flash memory, an EPROM, a read only memory (ROM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a ferromagnetic memory, optical storage, charge coupled devices, smart cards, a PCMCIA card, etc.

[0045] The example further relates to a method of decoding an encoded audio signal, the method comprising:
- obtaining a monaural signal from the encoded audio signal, the monaural signal comprising a combination of at least two audio channels,
- obtaining a set of spatial parameters from the encoded audio signal, the set of spatial parameters including a parameter representing a measure of similarity of waveforms of the at least two audio channels, and
- generating a multi-channel output signal from the monaural signal and the spatial parameters.

[0046] The example further relates to a decoder for decoding an encoded audio signal, the decoder comprising:
- means for obtaining a monaural signal from the encoded audio signal, the monaural signal comprising a combination of at least two audio channels,
- means for obtaining a set of spatial parameters from the encoded audio signal, the set of spatial parameters including a parameter representing a measure of similarity of waveforms of the at least two audio channels, and
means for generating a multi-channel output signal from the monaural signal and the spatial parameters.

[0047] It is noted that the above means may be implemented by any suitable circuit or device, e.g. as general- or special-purpose programmable microprocessors, Digital Signal Processors (DSP), Application Specific Integrated Circuits (ASIC), Programmable Logic Arrays (PLA), Field Programmable Gate Arrays (FPGA), special purpose electronic circuits, etc., or a combination thereof.

[0048] The example further relates to an apparatus for supplying a decoded audio signal, the apparatus comprising:

- an input for receiving an encoded audio signal,
- a decoder as described above and in the following for decoding the encoded audio signal to obtain a multi-channel output signal,
- an output for supplying or reproducing the multi-channel output signal.

[0049] The apparatus may be any electronic equipment or part of such equipment as described above.

[0050] The input may comprise any suitable circuitry or device for receiving a coded audio signal. Examples of such inputs include a network interface for receiving the signal via a computer network, such as a LAN, an Internet, or the like, communications circuitry for receiving the signal via a communications channel, e.g. a wireless communications channel, etc. In other examples, the input may comprise a device for reading a signal from a storage medium.

[0051] Similarly, the output may comprise any suitable circuitry or device for supplying a multi-channel signal in digital or analogue form.

BRIEF DESCRIPTION OF THE DRAWINGS

[0052] These and other aspects will be apparent and elucidated from the following with reference to the drawings in which:

Fig. 1 shows a flow diagram of a method of encoding an audio signal;
Fig. 2 shows a schematic block diagram of a coding system;
Fig. 3 illustrates a filter method for use in the synthesizing of the audio signal; and
Fig. 4 illustrates a decorrelator for use in the synthesizing of the audio signal.

DETAILED DESCRIPTION OF EMBODIMENTS

[0053] Fig. 1 shows a flow diagram of a method of encoding an audio signal.

[0054] In an initial step S1, the incoming signals L and R are split up in band-pass signals (preferably with a bandwidth which increases with frequency), indicated by reference numeral 101, such that their parameters can be analyzed as a function of time. One possible method for time/frequency slicing is to use time-windowing followed by a transform operation, but also time-continuous methods could be used (e.g., filterbanks). The time and frequency resolution of this process is preferably adapted to the signal; for transient signals a fine time resolution (in the order of a few milliseconds) and a coarse frequency resolution is preferred, while for non-transient signals a finer frequency resolution and a coarser time resolution (in the order of tens of milliseconds) is preferred. Subsequently, in step S2, the level difference (ILD) of corresponding subband signals is determined; in step S3 the time difference (ITD or IPD) of corresponding subband signals is determined; and in step S4 the amount of similarity or dissimilarity of the waveforms which cannot be accounted for by ILDs or ITDs, is described. The analysis of these parameters is discussed below.

Step S2: Analysis of ILDs

[0055] The ILD is determined by the level difference of the signals at a certain time instance for a given frequency band. One method to determine the ILD is to measure the root mean square (rms) value of the corresponding frequency band of both input channels and compute the ratio of these rms values (preferably expressed in dB).

Step S3: Analysis of the ITDs

[0056] The ITDs are determined by the time or phase alignment which gives the best match between the waveforms of both channels. One method to obtain the ITD is to compute the cross-correlation function between two corresponding subband signals and searching for the maximum. The delay that corresponds to this maximum in the cross-correlation function can be used as ITD value. A second method is to compute the analytic signals of the left and right subband (i.e., computing phase and envelope values) and use the (average) phase difference between the channels as IPD
The correlation is obtained by first finding the ILD and ITD that gives the best match between the corresponding subband signals and subsequently measuring the similarity of the waveforms after compensation for the ITD and/or ILD. Thus, in this framework, the correlation is defined as the similarity or dissimilarity of corresponding subband signals which can not be attributed to ILDs and/or ITDs. A suitable measure for this parameter is the maximum value of the cross-correlation function (i.e., the maximum across a set of delays). However, also other measures could be used, such as the relative energy of the difference signal after ILD and/or ITD compensation compared to the sum signal of corresponding subbands (preferably also compensated for ILDs and/or ITDs). This difference parameter is basically a linear transformation of the (maximum) correlation.

In the subsequent steps S5, S6, and S7, the determined parameters are quantized. An important issue of transmission of parameters is the accuracy of the parameter representation (i.e., the size of quantization errors), which is directly related to the necessary transmission capacity. In this section, several issues with respect to the quantization of the spatial parameters will be discussed. The basic idea is to base the quantization errors on so-called just-noticeable differences (JNDS) of the spatial cues. To be more specific, the quantization error is determined by the sensitivity of the human auditory system to changes in the parameters. Since the sensitivity to changes in the parameters strongly depends on the values of the parameters itself, we apply the following methods to determine the discrete quantization steps.

The correlation is defined as the similarity or dissimilarity of corresponding subband signals and subsequently measuring the similarity of the waveforms after compensation for the ITD and/or ILD. This difference parameter is basically a linear transformation of the (maximum) correlation.

- **Step S4: Analysis of the correlation**
- **Step S5: Quantization of ILDs**
- **Step S6: Quantization of the ITDs**
- **Step S7: Quantization of the correlation**
incoming signal components, or the like. This process preferably uses the extracted spatial parameters to generate the mono signal, i.e., by first aligning the subband waveforms using the ITD or IPD before combination.

[0064] Finally, in step S9, a coded signal 102 is generated from the monaural signal and the determined parameters. Alternatively, the sum signal and the spatial parameters may be communicated as separate signals via the same or different channels.

[0065] It is noted that the above method may be implemented by a corresponding arrangement, e.g. implemented as general- or special-purpose programmable microprocessors, Digital Signal Processors (DSP), Application Specific Integrated Circuits (ASIC), Programmable Logic Arrays (PLA), Field Programmable Gate Arrays (FPGA), special purpose electronic circuits, etc., or a combination thereof.

[0066] Fig. 2 shows a schematic block diagram of a coding system. The system comprises an encoder 201 and a corresponding decoder 202. The decoder 201 receives a stereo signal with two components L and R and generates a coded signal 203 comprising a sum signal S and spatial parameters P which are communicated to the decoder 202. The signal 203 may be communicated via any suitable communications channel 204. Alternatively or additionally, the signal may be stored on a removable storage medium 214, e.g. a memory card, which may be transferred from the encoder to the decoder.

[0067] The encoder 201 comprises an analysis module 205 and 206 for analyzing spatial parameters of the incoming signals L and R, respectively, preferably for each time/frequency slot; the encoder further comprises a parameter extraction module 207 that generates quantized spatial parameters; and a combiner module 208 that generates a sum subband. If necessary, the sum signal can be converted to the time domain by (1) inserting complex conjugates at channel subband with ITD/alignment). This phase correction follows from the computed ITD for that subband and consists of delaying the left- and right-channel subbands by setting all FFT bins which belong to other groups to zero, multiplying the resulting (band-limited) FFTs from the left and right channels, followed by an inverse FFT transform. The resulting cross-correlation function is scanned for a peak within an interchannel delay between -64 and +63 samples. The internal delay corresponding to the peak is used as ITD value, and the value of the cross-correlation function at this peak is used as this subband's interchannel correlation.

[0068] Synthesis (in the decoder 202) is performed by applying the spatial parameters to the sum signal to generate left and right output signals. Hence, the decoder 202 comprises a decoding module 210 which performs the inverse operation of module 209 and extracts the sum signal S and the parameters P from the coded signal 203. The decoder further comprises a synthesis module 211 which recovers the stereo components L and R from the sum (or dominant) signal and the spatial parameters.

[0069] In this example, the spatial parameter description is combined with a monoaural (single channel) audio coder to encode a stereo audio signal. It should be noted that although the described embodiment works on stereo signals, the general idea can be applied to n-channel audio signals, with n-1.

[0070] In the analysis modules 205 and 206, the left and right incoming signals L and R, respectively, are split up in various time frames (e.g. each comprising 2048 samples at 44.1 kHz sampling rate) and windowed with a square-root Hanning window. Subsequently, FFTs are computed. The negative FFT frequencies are discarded and the resulting FFTs are subdivided into groups (subbands) of FFT bins. The number of FFT bins that are combined in a subband g depends on the frequency: at higher frequencies more bins are combined than at lower frequencies. In one embodiment, FFT bins corresponding to approximately 1.8 ERBs (Equivalent Rectangular Bandwidth) are grouped, resulting in 20 subbands to represent the entire audible frequency range. The resulting number of FFT bins S[g] of each subsequent subband (starting at the lowest frequency) is S=[4 4 4 5 6 8 9 12 13 17 21 25 30 38 45 55 68 82 100 477]

[0071] Thus, the first three subbands contain 4 FFT bins, the fourth subband contains 5 FFT bins, etc. For each subband, the corresponding ILD, ITD and correlation (r) are computed. The ITD and correlation are computed simply by setting all FFT bins which belong to other groups to zero, multiplying the resulting (band-limited) FFTs from the left and right channels, followed by an inverse FFT transform. The resulting cross-correlation function is scanned for a peak within an interchannel delay between -64 and +63 samples. The internal delay corresponding to the peak is used as ITD value, and the value of the cross-correlation function at this peak is used as this subband's interchannel correlation.

[0072] In the combiner module 208, the left and right subbands are summed after a phase correction (temporal alignment). This phase correction follows from the computed ITD for that subband and consists of delaying the left-channel subband with ITD/2 and the right-channel subband with -ITD/2. The delay is performed in the frequency domain by appropriate modification of the phase angles of each FFT bin. Subsequently, the sum signal is computed by adding the phase-modified versions of the left and right subband signals. Finally, to compensate for uncorrelated or correlated addition, each subband of the sum signal is multiplied with sqrt(2/(1+r)), with r the correlation of the corresponding subband. If necessary, the sum signal can be converted to the time domain by (1) inserting complex conjugates at negative frequencies, (2) inverse FFT, (3) windowing, and (4) overlap-add.

[0073] In the parameter extraction module 207, the spatial parameters are quantized. ILDs (in dB) are quantized to the closest value of the following set L:

l=[-19 -16 -13 -10 -8 -6 -4 -2 0 2 4 6 8 10 13 16 19]

[0074] ITD quantization steps are determined by a constant phase difference in each subband of 0.1 rad. Thus, for each subband, the time difference that corresponds to 0.1 rad of the subband center frequency is used as quantization
step. For frequencies above 2 kHz, no ITD information is transmitted.

[0075] Interchannel correlation values are quantized to the closest value of the following ensemble R:
\[R = \{ 1.0, 0.9, 0.9, 0.82, 0.82, 0.75, 0.6, 0.3, 0 \} \]

[0076] This will cost another 3 bits per correlation value.

[0077] If the absolute value of the (quantized) ILD of the current subband amounts 19 dB, no ITD and correlation values are transmitted for this subband. If the (quantized) correlation value of a certain subband amounts zero, no ITD value is transmitted for that subband.

[0078] In this way, each frame requires a maximum of 233 bits to transmit the spatial parameters. With a frame length of 1024 frames, the maximum bitrate for transmission amounts 10.25 kbit/s. It should be noted that using entropy coding or differential coding, this bitrate can be reduced further.

[0079] The decoder comprises a synthesis module 211 where the stereo signal is synthesized from the received sum signal and the spatial parameters. Hence, for the purpose of this description it is assumed that the synthesis module receives a frequency-domain representation of the sum signal as described above. This representation may be obtained by windowing and FFT operations of the time-domain waveform. First, the sum signal is copied to the left and right output signals. Subsequently, the correlation between the left and right signals is modified with a decorrelator. In a preferred embodiment, a decorrelator as described below is used. Subsequently, each subband of the left signal is delayed by -ITD/2, and the right signal is delayed by ITD/2 given the (quantized) ITD corresponding to that subband. Finally, the left and right subbands are scaled according to the ILD for that subband. In one embodiment, the above modification is performed by a filter as described below. To convert the output signals to the time domain, the following steps are performed: (1) inserting complex conjugates at negative frequencies, (2) inverse FFT, (3) windowing, and (4) overlap-add.

[0080] Fig. 3 illustrates a filter method for use in the synthesizing of the audio signal. In an initial step 301, the incoming audio signal x(t) is segmented into a number of frames. The segmentation step 301 splits the signal into frames x_n(t) of a suitable length, for example, in the range 500-5000 samples, e.g. 1024 or 2048 samples.

[0081] Preferably, the segmentation is performed using overlapping analysis and synthesis window functions, thereby suppressing artefacts which may be introduced at the frame boundaries (see e.g. Princen, J. P., and Bradley, A. B.: "Analysis/synthesis filterbank design based on time domain aliasing cancellation", IEEE transactions on Acoustics, Speech and Signal processing, Vol. ASSP 34, 1986).

[0082] In step 302, each of the frames x_n(t) is transformed into the frequency domain by applying a Fourier transformation, preferably implemented as a Fast Fourier Transform (FFT). The resulting frequency representation of the n-th frame x_n(t) comprises a number of frequency components X(k,n) where the parameter n indicates the frame number and the parameter k indicates the frequency component or frequency bin corresponding to a frequency ω_k, 0<k<K. In general, the frequency domain components X(k,n) are complex numbers.

[0083] In step 303, the desired filter for the current frame is determined according to the received time-varying spatial parameters. The desired filter is expressed as a desired filter response comprising a set of K complex weight factors F(k,n), 0<k<K, for the n-th frame. The filter response F(k,n) may be represented by two real numbers, i.e. its amplitude a(k,n) and its phase ϕ(k,n) according to F(k,n) = a(k,n) · exp[i · ϕ(k,n)].

[0084] In the frequency domain, the filtered frequency components are Y(k,n) = F(k,n) · X(k,n), i.e. they result from a multiplication of the frequency components X(k,n) of the input signal with the filter response F(k,n). As will be apparent to a skilled person, this multiplication in the frequency domain corresponds to a convolution of the input signal frame x_n(t) with a corresponding filter f_n(t).

[0085] In step 304, the desired filter response F(k,n) is modified before applying it to the current frame X(k,n). In particular, the actual filter response F(k,n) to be applied is determined as a function of the desired filter response F(k,n) and of information 308 about previous frames. Preferably, this information comprises the actual and/or desired filter response of one or more previous frames, according to

\[F'(k,n) = a'(k,n) · \exp[j · ϕ'(k,n)] \]
\[= Φ[F(k,n), F(k,n-1), F(k,n-2),..., F'(k,n-1), F'(k,n-2),...] \].

[0086] Hence, by making the actual filter response dependant of the history of previous filter responses, artifacts introduced by changes in the filter response between consecutive frames may be efficiently suppressed. Preferably, the actual form of the transform function Φ is selected to reduce overlap-add artifacts resulting from dynamically-varying filter responses.

[0087] For example, the transform function Φ may be a function of a single previous response function, e.g. F'(k,n) = Φ_1[F(k,n), F(k,n-1)] or F'(k,n) = Φ_2[F(k,n), F'(k,n-1)]. In another example, the transform function may comprise a floating average over a number of previous response functions, e.g. a filtered version of previous response functions, or the like.
Preferred examples of the transform function Φ will be described in greater detail below.

[0088] In step 305, the actual filter response $F'(k,n)$ is applied to the current frame by multiplying the frequency components $X(k,n)$ of the current frame of the input signal with the corresponding filter response factors $F'(k,n)$ according to $Y(k,n) = F'(k,n) \cdot X(k,n)$.

[0089] In step 306, the resulting processed frequency components $Y(k,n)$ are transformed back into the time domain resulting in filtered frames $y_n(t)$. Preferably, the inverse transform is implemented as an Inverse Fast Fourier Transform (IFT).

[0090] Finally, in step 307, the filtered frames are recombined to a filtered signal $y(t)$ by an overlap-add method. An efficient implementation of such an overlap add method is disclosed in Bergmans, J. W. M.: "Digital baseband transmission and recording", Kluwer, 1996.

[0091] In one example, the transform function Φ of step 304 is implemented as a phase-change limiter between the current and the previous frame. According to this example, the phase change $\delta(k)$ of each frequency component $F(k,n)$ compared to the actual phase modification $\Phi'(k,n-1)$ applied to the previous sample of the corresponding frequency component is computed, i.e. $\delta(k) = \Phi(k,n) - \Phi'(k,n-1)$.

[0092] Subsequently, the phase component of the desired filter $F(k,n)$ is modified in such a way that the phase change across frames is reduced, if the change would result in overlap-add artifacts. According to this example, this is achieved by ensuring that the actual phase difference does not exceed a predetermined threshold c, e.g. by simply cutting of the phase difference, according to

\[
\begin{align*}
F(k,n), & \quad \text{if } |\delta(k)| < c \\
F'(k,n-1) e^{j \cdot \text{sign}(\delta(k))}, & \quad \text{otherwise}
\end{align*}
\]

[0093] The threshold value c may be a predetermined constant, e.g. between $\pi/8$ and $\pi/3$ rad. In one example, the threshold c may not be a constant but e.g. a function of time, frequency, and/or the like. Furthermore, alternatively to the above hard limit for the phase change, other phase-change-limiting functions may be used.

[0094] In general, in the above example, the desired phase-change across subsequent time frames for individual frequency components is transformed by an input-output function $P(\delta(k))$ and the actual filter response $F'(k,n)$ is given by

\[
F'(k,n) = F'(k,n-1) \cdot \exp[j \cdot P(\delta(k))].
\]

[0095] Hence, according to this example, a transform function P of the phase change across subsequent time frames is introduced.

[0096] In another example of the transformation of the filter response, the phase limiting procedure is driven by a suitable measure of tonality, e.g. a prediction method as described below. This has the advantage that phase jumps between consecutive frames which occur in noise-like signals may be excluded from the phase-change limiting procedure. This is an advantage, since limiting such phase jumps in noise-like signals would make the noise-like signal sound more tonal which is often perceived as synthetic or metallic.

[0097] According to this example, a predicted phase error $\theta(k) = \Phi(k,n) - \Phi(k,n-1) - \omega_h \cdot h$ is calculated. Here, ω_h denotes the frequency corresponding to the k-th frequency component and h denotes the hop size in samples. Here, the term hop size refers to the difference between two adjacent window centers, i.e. half the analysis length for symmetric windows. In the following, it is assumed that the above error is wrapped to the interval $[-\pi, +\pi]$.

[0098] Subsequently, a prediction measure P_k for the amount of phase predictability in the k-th frequency bin is calculated according to $P_k = (\pi \cdot |\theta(k)|) / \pi \in [0,1]$, where $|.|$ denotes the absolute value.

[0099] Hence, the above measure P_k yields a value between 0 and 1 corresponding to the amount of phase-predictability in the k-th frequency bin. If P_k is close to 1, the underlying signal may be assumed to have a high degree of tonality, i.e. has a substantially sinusoidal waveform. For such a signal, phase jumps are easily perceivable, e.g. by the listener of an audio signal. Hence, phase jumps should preferably be removed in this case. On the other hand, if the value of P_k is close to 0, the underlying signal may be assumed to be noisy. For noisy signals phase jumps are not easily perceived and may, therefore, be allowed.

[0100] Accordingly, the phase limiting function is applied if P_k exceeds a predetermined threshold, i.e. $P_k > A$, resulting in the actual filter response $F'(k,n)$ according to
Here, A is limited by the upper and lower boundaries of P which are +1 and 0, respectively. The exact value of A depends on the actual implementation. For example, A may be selected between 0.6 and 0.9.

It is understood that, alternatively, any other suitable measure for estimating the tonality may be used. In yet another embodiment, the allowed phase jump c described above may be made dependant on a suitable measure of tonality, e.g. the measure P_k above, thereby allowing for larger phase jumps if P_k is large and vice versa.

Fig. 4 illustrates a decorrelator for use in the synthesizing of the audio signal. The decorrelator comprises an all-pass filter 401 receiving the monoaural signal x and a set of spatial parameters P including the interchannel cross-correlation r and a parameter indicative of the channel difference c. It is noted that the parameter c is related to the interchannel level difference by $\text{ILD} = k \cdot \log(c)$, where k is a constant, i.e. ILD is proportional to the logarithm of c.

Preferably, the all-pass filter comprises a frequency-dependant delay providing a relatively smaller delay at high frequencies than at low frequencies. This may be achieved by replacing a fixed-delay of the all-pass filter with an all-pass filter comprising one period of a Schroeder-phase complex (see e.g. M.R. Schroeder, "Synthesis of low-peak-factor signals and binary sequences with low autocorrelation", IEEE Transact. Inf. Theor., 16:85-89, 1970). The decorrelator further comprises an analysis circuit 402 that receives the spatial parameters from the decoder and extracts the interchannel cross-correlation r and the channel difference c. The circuit 402 determines a mixing matrix $M(\alpha, \beta)$ as will be described below. The components of the mixing matrix are fed into a transformation circuit 403 which further receives the input signal x and the filtered signal $H \otimes x$. The circuit 403 performs a mixing operation according to

\[
\begin{bmatrix}
L \\ R
\end{bmatrix} = M(\alpha, \beta) \cdot \begin{bmatrix}
 x \\ H \otimes x
\end{bmatrix}
\]

resulting in the output signals L and R.

The correlation between the signals L and R may be expressed as an angle α between vectors representing the L and R signal, respectively, in a space spanned by the signals x and $H \otimes x$, according to $r = \cos(\alpha)$. Consequently, any pair of vectors that exhibits the correct angular distance has the specified correlation.

Hence, a mixing matrix M which transforms the signals x and $H \otimes x$ into signals L and R with a predetermined correlation r may be expressed as follows:

\[
M = \begin{bmatrix}
\cos(\alpha/2) & \sin(\alpha/2) \\
\cos(-\alpha/2) & \sin(-\alpha/2)
\end{bmatrix}
\]

Thus, the amount of all-pass filtered signal depends on the desired correlation. Furthermore, the energy of the all-pass signal component is the same in both output channels (but with a 180° phase shift).

It is noted that the case where the matrix M is given by

\[
M = \sqrt{2} \begin{bmatrix}
1 & 1 \\ 1 & -1
\end{bmatrix}
\]

i.e. the case where $\alpha=90^\circ$ corresponding to uncorrelated output signals $(r=0)$, corresponds to a Lauridsen decorrelator.

In order to illustrate a problem with the matrix of eqn. (5), we assume a situation with an extreme amplitude panning towards the left channel, i.e. a case where a certain signal is present in the left channel only. We further assume that the desired correlation between the outputs is zero. In this case, the output of the left channel of the transformation of eqn. (3) with the mixing matrix of eqn. (5) yields $L=1/\sqrt{2}(x+H \otimes)$. Thus, the output consists of the original signal x combined with its all-passed filtered version $H \otimes x$.

However, this is an undesired situation, since the all-pass filter usually deteriorates the perceptual quality of the signal. Furthermore, the addition of the original signal and the filtered signal results in comb-filter effects, such as perceived coloration of the output signal. In this assumed extreme case, the best solution would be that the left output
In situations with more moderate level differences, the preferred situation is that the louder output channel contains relatively more of the original signal, and the softer output channel contains relatively more of the filtered signal. Hence, in general, it is preferred to maximize the amount of the original signal present in the two outputs together, and to minimize the amount of the filtered signal.

According to this embodiment, this is achieved by introducing a different mixing matrix including an additional common rotation:

\[
M = C \cdot \begin{pmatrix}
\cos(\beta + \alpha / 2) & \sin(\beta + \alpha / 2) \\
\cos(\beta - \alpha / 2) & \sin(\beta - \alpha / 2)
\end{pmatrix}
\]

Here β is an additional rotation, and C is a scaling matrix which ensures that the relative level difference between the output signals equals c, i.e.

\[
C = \begin{pmatrix}
c & 0 \\
1 + c & 1 \\
0 & 1 \\
0 & 1 + c
\end{pmatrix}
\]

Inserting the matrix of eqn. (6) in eqn. (3) yields the output signals generated by the matrixing operation according to this embodiment:

\[
\begin{pmatrix}
L \\
R
\end{pmatrix} = \begin{pmatrix}
c & 0 \\
1 + c & 1 \\
0 & 1 + c
\end{pmatrix} \cdot \begin{pmatrix}
\cos(\beta + \alpha / 2) & \sin(\beta + \alpha / 2) \\
\cos(\beta - \alpha / 2) & \sin(\beta - \alpha / 2)
\end{pmatrix} \cdot \begin{pmatrix}
x \\
H \otimes x
\end{pmatrix}
\]

Hence, the output signals L and R still have an angular difference α, i.e. the correlation between the L and R signals is not affected by the scaling of the signals L and R according to the desired level difference and the additional rotation by the angle β of both the L and the R signal.

As mentioned above, preferably, the amount of the original signal x in the summed output of L and R should be maximized. This condition may be used to determine the angle β, according to

\[
\frac{\partial (L+R)}{\partial x} = 0,
\]

which yields the condition:

\[
\tan(\beta) = \frac{1-c}{1+c} \cdot \tan(\alpha / 2).
\]

In summary, this application describes a psycho-acoustically motivated, parametric description of the spatial attributes of multichannel audio signals. This parametric description allows strong bitrate reductions in audio coders, since only one monaural signal has to be transmitted, combined with (quantized) parameters which describe the spatial properties of the signal. The decoder can form the original amount of audio channels by applying the spatial parameters. For near-CD-quality stereo audio, a bitrate associated with these spatial parameters of 10 kbit/s or less seems sufficient to reproduce the correct spatial impression at the receiving end. This bitrate can be scaled down further by reducing the spectral and/or temporal resolution of the spatial parameters and/or processing the spatial parameters using lossless
compression algorithms.

[0118] It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be able to design many alternative embodiments without departing from the scope of the appended claims.

[0119] For example, the invention has primarily been described in connection with an embodiment using the two localization cues ILD and ITD/IPD. In alternative embodiments, other localization cues may be used. Furthermore, in one embodiment, the ILD, the ITD/IPD, and the interchannel cross-correlation may be determined as described above, but only the interchannel cross-correlation is transmitted together with the monaural signal, thereby further reducing the required bandwidth/storage capacity for transmitting/storing the audio signal. Alternatively, the interchannel cross-correlation and one of the ILD and ITD/TPD may be transmitted. In these embodiments, the signal is synthesized from the monaural signal on the basis of the transmitted parameters only.

[0120] In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word “comprising” does not exclude the presence of elements or steps other than those listed in a claim. The word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.

[0121] The invention can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In the device claim enumerating several means, several of these means can be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.

Claims

1. Decoding apparatus for decoding an encoded digital audio signal comprising at least a first and a second digital audio signal component, which have been encoded into a composite digital signal (X) and a parameter signal (P), the decoding apparatus comprising:

- an input unit (210) for receiving a transmission signal,
- a demultiplexer unit (210) for retrieving the composite digital signal and the parameter signal from the transmission signal,
- a decorrelator unit (401) for generating from the composite digital signal a decorrelated version of the composite digital signal,
- a matrixing unit (403) for receiving the composite digital signal and the decorrelated version of the composite digital signal and generating therefrom a replica of the first and second digital audio signal component,
- the replica of the first digital audio signal component being a linear combination of the composite digital signal and the decorrelated version of the composite digital signal, using multiplier coefficients that are dependent of the parameter signal,
- the replica of the second digital audio signal component being a linear combination of the composite digital signal and the decorrelated version of the composite digital signal, using multiplier coefficients that are dependent of the parameter signal.

2. Decoding apparatus as claimed in claim 1, characterized in that the parameter signal comprises a first parameter signal component (r) which is a measure of the similarity of waveforms of the replicas of the at least first and second digital audio signals, said measure of similarity corresponding to a value of a cross correlation function between the replicas of said at least first and second digital audio signal components, said value being substantially equal to the maximum of said cross correlation function.

3. Decoding apparatus as claimed in claim 2, characterized in that the parameter signal comprises a second parameter signal component (c) which is representative of the relative level difference between the replicas of the first and second digital audio signal components.

4. Decoding apparatus as claimed in claim 3, characterized in that the matrixing unit equals

\[
M = C \begin{pmatrix}
\cos(\beta + \alpha / 2) & \sin(\beta + \alpha / 2) \\
\cos(\beta - \alpha / 2) & \sin(\beta - \alpha / 2)
\end{pmatrix}
\]
wherein β is an angle value related to the first parameter signal component and C is related to the second parameter signal component.

5. Decoding apparatus as claimed in claim 4, characterized in that the following relationship exists between α and the first parameter signal component:

$$r = \cos (\alpha),$$

wherein r is the value of the maximum of the cross correlation function.

6. Decoding apparatus as claimed in claim 4, characterized in that C is a 2x2 matrix and the following relationship exists between matrix coefficients of C and the second parameter signal component (c)

$$C = \begin{pmatrix} \frac{c}{1+c} & 0 \\ 0 & \frac{1}{1+c} \end{pmatrix}$$

where c equals the relative level difference between said signals.

7. Decoding apparatus as claimed in claim 4, characterized in that the following relationship exists between α and β:

$$\tan(\beta) = \frac{1-c}{1+c} \cdot \tan(\alpha / 2)$$

8. Decoding apparatus as claimed in any of the preceding claims, characterized in that the decorrelator unit is adapted to delay the composite digital signal so as to obtain the decorrelated composite digital signal.

9. Decoding apparatus as claimed in claim 8, characterized in that the delay is a frequency dependent delay.

10. Decoding apparatus as claimed in anyone of the preceding claims, characterized in that the composite digital signal is a wideband signal split into a plurality of composite digital subsignals, one for each of a plurality of frequency bands, the parameter signal also being split into a plurality of parameter sub signals, one for each of the plurality of frequency bands,

- the decorrelator unit (401) being adapted to generate from the composite digital sub signals a decorrelated version of the composite digital sub signals,
- the matrixing unit (403) being adapted to receive the composite digital sub signals and the decorrelated version of the composite digital sub signals and generating therefrom a replica of a plurality of sub signals for each of the first and second digital audio signal components,
- a sub signal of the first digital audio signal component being a linear combination of a corresponding composite digital sub signal and the decorrelated version of the corresponding composite digital sub signal, using multiplier coefficients that are dependent of a corresponding one of said parameter sub signals,
- a sub signal of the second digital audio signal component being a linear combination of a corresponding composite digital sub signal and the decorrelated version of the corresponding composite digital sub signal, using multiplier coefficients that are dependent of a corresponding one of said parameter sub signals,
- the arrangement further comprising a transform unit (307) to transform the sub signals of the first and second digital audio signal components into said replicas of said first and second digital audio signal components.
11. Decoding apparatus as claimed in claim 10, **characterized in that** the composite digital sub signals are split into consecutive time signals, one for each of consecutive time intervals in the time domain, the parameter sub signals also being split into parameter sub signals of each of the consecutive time intervals,

- the decorrelator unit (401) further being adapted to generate for each consecutive time interval and each composite digital sub signal from said composite digital sub signals a decorrelated version of said composite digital sub signal,
- the matrixing unit (403) further being adapted to generate for each consecutive time interval from each composite digital sub signal and its decorrelated version thereof in said interval, a replica of a sub signal for each of the first and second digital audio signal components,
- a sub signal of the first digital audio signal component in said time interval being a linear combination of a corresponding composite digital sub signal in said time interval and the decorrelated version of the corresponding composite digital sub signal in said time interval, using multiplier coefficients that are dependent of the parameter sub signal for said time interval,
- a sub signal of the second digital audio signal component in said time interval being a linear combination of a corresponding composite digital sub signal in said time interval and the decorrelated version of the corresponding composite digital sub signal in said time interval, using multiplier coefficients that are dependent of the parameter sub signal for said time interval.

Patentansprüche

1. Decodieranordnung zum Decodieren eines codierten digitalen Audiosignals mit wenigstens einem ersten und einem zweiten digitalen Audiosignalanteil, die in ein zusammengesetztes digitales Signal (X) und ein Parametersignal (P) codiert worden sind, wobei die Decodieranordnung die nachfolgenden Elemente umfasst:

- eine Eingangseinheit (210) zum Empfangen eines Übertragungssignals,
- eine Demultiplexereinheit zum Ermitteln des zusammengesetzten digitalen Signals und des Parametersignals aus dem Übertragungssignal,
- eine Dekorreliereinheit (401) zum Erzeugen einer dekorrellierten Version des zusammengesetzten digitalen Signals aus diesem Signal,
- eine Matrixiereinheit (403) zum Empfangen des zusammengesetzten Signals und der dekorrellierten Version des zusammengesetzten digitalen Signals und zum Erzeugen einer Replik des ersten und zweiten digitalen Audiosignalanteils daraus,
- wobei die Replik des ersten digitalen Audiosignalanteils eine lineare Kombination des zusammengesetzten digitalen Signals und der dekorrellierten Version des zusammengesetzten digitalen Signals ist, und zwar unter Anwendung von Multiplizierkoeffizienten, die von dem Parametersignal abhängig sind,
- wobei die Replik des zweiten digitalen Audiosignalanteils eine lineare Kombination des zusammengesetzten digitalen Signals und der dekorrellierten Version des ersten zusammengesetzten digitalen Signals ist, wobei Multiplizierkoeffizienten verwendet werden, die von dem Parametersignal abhängig sind.

2. Decodieranordnung nach Anspruch 1, **dadurch gekennzeichnet, dass** das Parametersignal einen ersten Parametersignalanteil (r) aufweist, der ein Maß der Ähnlichkeit von Wellenformen der Repliken des wenigstens ersten und zweiten digitalen Audiosignals ist, wobei dieses Maß der Ähnlichkeit einem Wert einer Kreuzkorrelationsfunktion zwischen den Repliken des genannten wenigstens ersten und zweiten digitalen Audiosignalanteils entspricht, wobei dieser Wert dem Maximum der genannten Kreuzkorrelationsfunktion im Wesentlichen entspricht.

3. Decodieranordnung nach Anspruch 2, **dadurch gekennzeichnet, dass** das Parametersignal einen zweiten Parametersignalanteil (c) aufweist, der die relative Pegeldifferenz zwischen den Repliken des ersten und zweiten digitalen Audiosignalanteils darstellt.

4. Decodieranordnung nach Anspruch 3, **dadurch gekennzeichnet, dass** die Matrixiereinheit der nachstehenden Gleichung entspricht:
wobei β ein Winkelwert ist, der mit dem ersten Parametersignalanteil in einem Verhältnis steht, und C mit dem zweiten Parametersignalanteil in einem Verhältnis steht.

5. Decodieranordnung nach Anspruch 4, dadurch gekennzeichnet, dass es zwischen α und dem ersten Parametersignalanteil die nachfolgende Beziehung gibt:

$$ r = \cos(\alpha) $$

wobei r der Wert des Maximums der Kreuzkorrelationsfunktion ist.

6. Decodieranordnung nach Anspruch 4, dadurch gekennzeichnet, dass C eine 2×2 Matrix ist und dass es zwischen Matrixkoeffizienten von C und dem zweiten Parametersignalanteil (c) die nachfolgende Beziehung gibt:

$$ C = \begin{pmatrix} \frac{c}{1+c} & 0 \\ 0 & \frac{1}{1+c} \end{pmatrix} $$

wobei c der relativen Pegeldifferenz zwischen den genannten Signalen entspricht.

7. Decodieranordnung nach Anspruch 4, dadurch gekennzeichnet, dass es zwischen α und β die nachfolgende Beziehung gibt:

$$ \tan(\beta) = \frac{1-c}{1+c} \cdot \tan(\alpha/2) $$

8. Decodieranordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Dekorrelateinheit dazu vorgesehen ist, das zusammengesetzte digitale Signal zu verzögern, und zwar zum Erhalten des dekorrellierten zusammengesetzten digitalen Signals.

9. Decodieranordnung nach Anspruch 8, dadurch gekennzeichnet, dass die Verzögerung eine frequenzabhängige Verzögerung ist.

10. Decodieranordnung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das zusammengesetzte digitale ein Breitbandsignal ist, das in eine Anzahl zusammengesetzter digitaler Subsignale aufgeteilt ist, je mit einer Anzahl Frequenzbänder, wobei das Parametersignal ebenfalls in eine Anzahl Parametersubsignale aufgeteilt ist, je mit einer Anzahl Frequenzbänder, wobei die Dekorrelationseinheit (401) dazu vorgesehen ist, aus den zusammengesetzten digitalen Subsignalen eine dekorrellierte Version der zusammengesetzten digitalen Subsignale zu erzeugen, wobei die Matrixiereinheit (403) dazu vorgesehen ist, die zusammengesetzten digitalen Subsignale und die
dekorrelierte Version der zusammengesetzten digitalen Subsignale zu empfangen und daraus eine Replik einer Anzahl Subsignale für jeden Anteil der ersten und zweiten digitalen Audiosignalanteile zu erzeugen,
- wobei ein Subsignal des ersten digitalen Audiosignalanteils eine lineare Kombination eines entsprechenden zusammengesetzten digitalen Subsignals und der dekorrellierten Version des entsprechenden zusammengesetzten digitalen Subsignals ist, wobei Multiplizierkoeffizienten verwendet werden, die von einem entsprechenden Signal der genannten Parametersubsituationen abhängig sind,
- wobei ein Subsignal des zweiten digitalen Audiosignalanteils eine lineare Kombination eines entsprechenden zusammengesetzten digitalen Subsignals und der dekorrellierten Version des entsprechenden zusammengesetzten digitalen Subsignals ist, wobei Multiplizierkoeffizienten verwendet werden, die von einem entsprechenden Signal der genannten Parametersubsituationen abhängig sind.
- wobei die Anordnung weiterhin eine Transformationseinheit (307) zum Transformieren der Subsignale der ersten und zweiten digitalen Audiosignalanteile in die genannten Repliken der genannten ersten und zweiten digitalen Audiosignalanteile aufweist.

11. Decodieranordnung nach Anspruch 10, dadurch gekennzeichnet, dass die zusammengesetzten digitalen Subsignale in aufeinander folgende Zeitintervalle aufgeteilt werden, und zwar jeweils ein Zeitsignal für jedes Intervall von aufeinander folgenden Zeitintervallen in der Zeitdomäne, wobei die Parametersubsituationen auch in Parametersubsituationen jedes der aufeinander folgenden Zeitintervalle aufgeteilt sind,
- wobei die Dekorrelationseinheit (401) weiterhin dazu vorgesehen ist, für jedes der aufeinander folgenden Zeitintervalle und jedes zusammengesetzte digitale Subsignal aus den genannten zusammengesetzten digitalen Subsignalen eine dekorrelierte Version des genannten zusammengesetzten digitalen Subsignals zu erzeugen,
- wobei die Matrixiereinheit (403) weiterhin dazu vorgesehen ist, für jedes der aufeinander folgenden Zeitintervalle aus jedes zusammengesetzte digitale Subsignal und der dekorrelierten Version davon in dem genannten Intervall, eine Replik eines Subsignals für jedes der ersten und zweiten digitalen Audiosignalanteile zu erzeugen,
- wobei ein Subsignal des ersten digitalen Audiosignalanteils in dem genannten Zeitintervall eine lineare Kombination eines entsprechenden zusammengesetzten digitalen Subsignals in dem genannten Zeitintervall und der dekorrelierten Version des entsprechenden zusammengesetzten digitalen Subsignals in dem genannten Zeitintervall ist, wobei Multiplizierkoeffizienten verwendet werden, die von dem Parametersubsituation für das genannte Zeitintervall abhängig sind,

Revendications

1. Appareil de décodage pour décoder un signal audionumérique codé comprenant au moins un premier composant de signal audionumérique et un deuxième composant de signal audionumérique, qui ont été codés en un signal numérique composite (X) et un signal de paramètre (P), l’appareil de décodage comprenant :
- une unité d’entrée (210) pour recevoir un signal de transmission,
- une unité de démultiplexage (210) pour extraire le signal numérique composite et le signal de paramètre du signal de transmission,
- une unité de décorrélation (401) pour générer à partir du signal numérique composite une version décorrélée du signal numérique composite,
- une unité de matricage (403) pour recevoir le signal numérique composite et la version décorrélée du signal numérique composite et générer à partir de cela une réplique du premier composant de signal audionumérique et du deuxième composant de signal audionumérique,
- la réplique du premier composant de signal audionumérique étant une combinaison linéaire du signal numérique composite et de la version décorrélée du signal numérique composite, en utilisant des coefficients multiplicateurs qui dépendent du signal de paramètre,
- la réplique du deuxième composant de signal audionumérique étant une combinaison linéaire du signal numérique composite et de la version décorrélée du signal numérique composite, en utilisant des coefficients multiplicateurs qui dépendent du signal de paramètre.
2. Appareil de décodage selon la revendication 1, caractérisé en ce que le signal de paramètre comprend un premier composant de signal de paramètre \(r \) qui est une mesure de la similarité des formes d’onde des répliques des au moins un premier signal audionumérique et un deuxième signal audionumérique, ladite mesure de similarité correspondant à une valeur de fonction de corrélation croisée entre les répliques desdits au moins un premier composant de signal audionumérique et un deuxième composant de signal audionumérique, ladite valeur étant sensiblement égale au maximum de ladite fonction de corrélation croisée.

3. Appareil de décodage selon la revendication 2, caractérisé en ce que le signal de paramètre comprend un deuxième composant de signal de paramètre \(c \) qui est représentatif de la différence de niveau relatif entre les répliques du premier composant de signal audionumérique et du deuxième composant de signal audionumérique.

4. Appareil de décodage selon la revendication 3, caractérisé en ce que l’unité de matriçage est égale à :

\[
M = C \begin{pmatrix}
\cos(\beta + \alpha / 2) & \sin(\beta + \alpha / 2) \\
\cos(\beta - \alpha / 2) & \sin(\beta - \alpha / 2)
\end{pmatrix}
\]

où \(\beta \) est une valeur d’angle liée au premier composant de signal de paramètre et \(C \) est liée au deuxième composant de signal de paramètre.

5. Appareil de décodage selon la revendication 4, caractérisé en ce que la relation suivante existe entre \(\alpha \) et le premier composant de signal de paramètre :

\[
r = \cos(\alpha),
\]

où \(r \) est la valeur du maximum de la fonction de corrélation croisée.

6. Appareil de décodage selon la revendication 4, caractérisé en ce que \(C \) est une matrice 2 x 2 et la relation suivante existe entre des coefficients de matrice de \(C \) et le deuxième composant de signal de paramètre \(c \) :

\[
C = \begin{pmatrix}
c & 0 \\
1+c & 1+c
\end{pmatrix}
\]

où \(c \) est égal à la différence de niveau relatif entre lesdits signaux.

7. Appareil de décodage selon la revendication 4, caractérisé en ce que la relation suivante existe entre \(\alpha \) et \(\beta \) :

\[
\tan(\beta) = \frac{1-c}{1+c} \cdot \tan(\alpha / 2)
\]

8. Appareil de décodage selon l’une quelconque des revendications précédentes, caractérisé en ce que l’unité de décorrélation est apte à retarder le signal numérique composite de manière à obtenir le signal numérique composite décorrélé.

9. Appareil de décodage selon la revendication 8, caractérisé en ce que le délai est un délai dépendant de la fréquence.

10. Appareil de décodage selon l’une quelconque des revendications précédentes, caractérisé en ce que le signal numérique composite est un signal de bande large divisé en une pluralité de sous-signaux numériques composites,
un pour chacune d’une pluralité de bandes de fréquences, le signal de paramètre étant également divisé en une pluralité de sous-signaux de paramètre, un pour chacune de la pluralité de bandes de fréquences,

- l’unité de décorrélation (401) étant apte à générer à partir des sous-signaux numériques composites une version décorrélée des sous-signaux numériques composites,
- l’unité de matriçage (403) étant apte à recevoir les sous-signaux numériques composites et la version décorrélée des sous-signaux numériques composites et générer à partir de cela une réplique d’une pluralité de sous-signaux pour chacun des premier et deuxième composants de signal audionumérique,
- un sous-signal du premier composant de signal audionumérique étant une combinaison linéaire d’un sous-signal numérique composite correspondant et de la version décorrélée du sous-signal numérique composite correspondant, en utilisant des coefficients multiplicateurs qui dépendent de l’un correspondant desdits sous-signaux de paramètre,
- un sous-signal du deuxième composant de signal audionumérique étant une combinaison linéaire d’un sous-signal numérique composite correspondant et de la version décorrélée du sous-signal numérique composite correspondant, en utilisant des coefficients multiplicateurs qui dépendent de l’un correspondant desdits sous-signaux de paramètre,
- l’agencement comprenant en outre une unité de transformation (307) pour transformer les sous-signaux des premier et deuxième composants de signal audionumérique dans lesdites répliques desdits premier et deuxième composants de signal audionumérique.

11. Appareil de décodage selon la revendication 10, caractérisé en ce que les sous-signaux numériques composites sont divisés en signaux de temps consécutifs, un pour chacun des intervalles de temps consécutifs dans le domaine de temps, les sous-signaux de paramètre étant également divisés en sous-signaux de paramètre de chacun des intervalles de temps consécutifs,

- l’unité de décorrélation (401) étant en outre apte à générer pour chaque intervalle de temps consécutif et chaque sous-signal numérique composite à partir desdits sous-signaux numériques composites une version décorrélée dudit sous-signal numérique composite,
- l’unité de matriçage (403) étant en outre apte à générer pour chaque intervalle de temps consécutif à partir de chaque sous-signal numérique composite et de sa version décorrélée dans ledit intervalle, une réplique d’un sous-signal pour chacun du premier composant de signal audionumérique et du deuxième composant de signal audionumérique,
- un sous-signal du premier composant de signal audionumérique dans ledit intervalle de temps étant une combinaison linéaire d’un sous-signal numérique composite correspondant dans ledit intervalle de temps et de la version décorrélée du sous-signal numérique composite correspondant dans ledit intervalle de temps, en utilisant des coefficients multiplicateurs qui dépendent du sous-signal de paramètre pour ledit intervalle de temps,
- un sous-signal du deuxième composant de signal audionumérique dans ledit intervalle de temps étant une combinaison linéaire d’un sous-signal numérique composite correspondant dans ledit intervalle de temps et de la version décorrélée du sous-signal numérique composite correspondant dans ledit intervalle de temps, en utilisant des coefficients multiplicateurs qui dépendent du sous-signal de paramètre pour ledit intervalle de temps.
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 1107232 A [0005]
- GB 2353926 A [0006]

Non-patent literature cited in the description